skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mironov, Vladimir"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The photophysical properties of a series of recently synthesized single benzene fluorophores were investigated using ensemble density functional theory calculations. The energetic stability of the ground and excited state species were counterposed against the aromaticity index derived from local vibrational modes. It was found that the large Stokes shift of the fluorophores (up toca.5800 cm) originates from the effect of electron donating and electron withdrawing substituents rather than ‐delocalization and related (anti‐)aromaticity. On the basis of nonadiabatic molecular dynamics simulations, the absence of fluorescence from one of the regioisomers was explained by the occurrence of easily accessible S/S conical intersections below the vertical excitation energy level. It is demonstrated in the manuscript that the analysis of local mode force constants and the related aromaticity index represent a useful tool for the characterization of ‐delocalization effects in ‐conjugated compounds. 
    more » « less